Evaluation for M.Tech (CSE Part time)

SEMESTER-III													
SI.	Subject Codes	Subject	I	Periods Evaluation Scheme			e	End Semester		Total	Credit		
No.		1	L	Т	Р	СТ	TA	Total	PS	TE	PE		
1	WCS- 300	Advance Algorithms	3	0	0	20	10	30		70		100	3
2	WCS-031	Data Preparation and Analysis	3	0	0	20	10	30		70		100	3
3	WCS- 310	Advance Algorithms Lab	0	0	4				25		25	50	2
4	MLC- 301	Research Methodology and IPR	2	0	0	20	10	30		70		100	2
		Total										350	10

Course Code	WCS-300
Course Name	Advanced Algorithms
Credits	3
Pre-Requisites	UG level course in Algorithm Design and Analysis

COURSE OBJECTIVE

- Introduce students to the advanced methods of designing and analyzing algorithms.
- The student should be able to choose appropriate algorithms and use it for a specific problem.
- To familiarize students with basic paradigms and data structures used to solve advanced algorithmic problems.
- Students should be able to understand different classes of problems concerning their computation difficulties.
- To introduce the students to recent developments in the area of algorithmic design.

LECTURE WITH BREAKUP	NO. OF LECTURES
Unit1	6
Sorting: Review of various sorting algorithms, topological sorting	
Graph: Definitions and Elementary Algorithms: Shortest path by BFS, shortest path	
in edge-weighted case (Dijkasra's), depth-first search and computation of strongly	
connected components, emphasis on correctness proof of the algorithm and time/space analysis, example of amortized analysis.	
Unit 2	8
Matroids: Introduction to greedy paradigm, algorithm to compute a maximum	
weight maximal independent set. Application to MST.	
Graph Matching: Algorithm to compute maximum matching. Characterization of	
maximum matching by augmenting paths, Edmond's Blossom algorithm to	
compute augmenting path.	
Unit 3	9
Flow-Networks: Maxflow-mincut theorem, Ford-Fulkerson Method to compute	
maximum flow, Edmond-Karp maximum-flow algorithm.	
Matrix Computations: Strassen's algorithm and introduction to divide and conquer	
paradigm, inverse of a triangular matrix, relation between the time	
	10
Unit 4 Chartest Dath in Craphe: Floud Warshall algorithm and introduction to dynamic	10
programming paradigm. More examples of dynamic programming	
Modulo Representation of integers /nolynomials: Chinese Remainder Theorem	
Conversion between base-representation and modulo-representation. Extension to	
nolynomials Application: Internolation problem	
Discrete Fourier Transform (DFT): In complex field, DFT in modulo ring, Fast	
Fourier Transform algorithm. Schonhage-Strassen Integer Multiplication algorithm	
Unit 5	10
Linear Programming: Geometry of the feasibility region and Simplex algorithm	
NP-completeness: Examples, proof of NP-hardness and NP-completeness.	
One or more of the following topics based on time and interest	
Approximation algorithms, Randomized Algorithms, Interior Point Method,	
Advanced Number Theoretic Algorithm	
Unit 6	5
Recent Trands in problem solving paradigms using recent searching and sorting	
techniques by applying recently proposed data structures.	

COURSE OUTCOMES

After completion of course, students would be able to:

- Analyze the complexity/performance of different algorithms.
- Determine the appropriate data structure for solving a particular set of problems.
- Categorize the different problems in various classes according to their complexity.
- Students should have an insight of recent activities in the field of the advanced data structure.

References:

- 1. "Introduction to Algorithms" byCormen, Leiserson, Rivest, Stein.
- 2. "The Design and Analysis of Computer Algorithms" by Aho, Hopcroft, Ullman.

3. "Algorithm Design" by Kleinberg and Tardos.

Course Code	WCS-031					
ourse Name Data Preparation and Analysis						
credits 3						
Pre-Requisites	Pre-Requisites					
COURSE OBJECTIVE						
• To prepare the data f	or analysis and develop meaningful Data Visualizations					
LECTURE WITH BREAKU	NO. OF LECTURES					
Unit1: Data Gathering and Prep Data formats, parsing and	9					
Unit2:						
Data Cleaning: Consistency checking, Heterogeneous and missing data, Data Transformation and segmentation						
Unit3: Exploratory Analysis: Descriptive and compara	13					
generation						
Unit4: Visualization: Designing visualizat	15					
Correlations and connections, Hierarchies and networks, interactivity						
LUUKSE UUTLUMES						
After completion of course, students would be:						
Able to extract the data for performing the Analysis.						

References:

1. Making sense of Data : A practical Guide to Exploratory Data Analysis and Data Mining, by Glenn J. Myatt

Research Methodology and IPRSUBJ. CODE - MLC-101							
Teaching Scheme Lectures: 1hrs/week							
Course Outcomes:							
At the end of this course, students will be able to							
\Box Understand research problem formulation.							
□ Analyze research related information							
□ Follow research ethics							
Understand that today's world is controlled by Co tomorrow world will be ruled by ideas, concept, a	omputer, Information Technology, but and creativity.						
Understanding that when IPR would take such im nation, it is needless to emphasis the need of infor be promoted among students in general & engine	portant place in growth of individuals & rmation about Intellectual Property Right to ering in particular.						
□ Understand that IPR protection provides an incen and investment in R & D, which leads to creation brings about, economic growth and social benefit	tive to inventors for further research work of new and better products, and in turn						

LECTURE WITH BREAKUP

Unit 1: INTRODUCTION

Meaning of research problem, Sources of research problem, Criteria Characteristics of a good research problem, Errors in selecting a research problem, Scope and objectives of research problem. Approaches of investigation of solutions for research problem, data collection, analysis, interpretation, Necessary instrumentations

Unit 2:

Effective literature studies approaches, analysis Plagiarism, and Research ethics

Unit 3:

Effective technical writing, how to write report, Paper Developing a Research Proposal, Format of research proposal, a presentation and assessment by a review committee

UNIT 4:

Nature of Intellectual Property: Patents, Designs, Trade and Copyright.

Process of Patenting and Development: technological research, innovation, patenting, development.

International Scenario: International cooperation on Intellectual Property. Procedure for grants of patents, Patenting under PCT.

Unit 5:

Patent Rights: Scope of Patent Rights. Licensing and transfer of technology. Patent

information and databases. Geographical Indications.

Unit 6:

New Developments in IPR: Administration of Patent System. New developments in IPR; IPR of Biological Systems, Computer Software etc. Traditional knowledge Case Studies, IPR and IITs.

References:

i.	Stuart	Melville	and	Wayne	Goddard,	"Research			
			methe	odology: a	an introducti	ion for science &			
engineering students'"									

- ii. Wayne Goddard and Stuart Melville, "Research Methodology: An Introduction"
- iii. Ranjit Kumar, 2nd Edition, "Research Methodology: A Step by Step Guide for beginners"
- iv. Halbert, "Resisting Intellectual Property", Taylor & Francis Ltd, 2007.
- v. Mayall, "Industrial Design", McGraw Hill, 1992.
- vi. Niebel, "Product Design", McGraw Hill, 1974.
- vii. Asimov, "Introduction to Design", Prentice Hall, 1962.
- viii. Robert P. Merges, Peter S. Menell, Mark A. Lemley, "Intellectual Property in New Technological Age", 2016.
 - ix. T. Ramappa, "Intellectual Property Rights Under WTO", S. Chand, 2008